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Abstract

The proposed system is a Curatorless Leveraged Tokenized Vault (LTV)
with a Constant Target Loan-To-Value (LTV) ratio. This vault operates
without a central curator and allows users to deposit and withdraw funds
while receiving tokenized shares representing their holdings. The architec-
ture is based on two interconnected EIP4626 vaults. To ensure alignment
with the target LTV, an auction-based stimulus system is employed, which
incentivizes users to participate in rebalancing actions through rewards or
fees. This approach also integrates basic level of MEV protection to guard
against frontrunning and maintain system integrity.
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1 Title explanation

The system being introduced is an LT V: Curatorless Leveraged Tokenized Vault
with a Constant Target Loan-To-Value Ratio.

� Vault is a protocol where users can deposit and withdraw money.

� Tokenized[1][2] means that a user gets transferable shares when they
deposit and send to the vault shares during withdrawals.

� Leveraged means that the vault uses two types of assets: one is used as
collateral, and the other is borrowed. The vault deposits the collateral
asset into a lending protocol and borrows the other asset. This creates
leverage by using borrowed funds in addition to the original deposit, allow-
ing the user to have higher exposure for collateral assets than the initial
deposit.

� Constant Target Loan-To-Value ratio[3] means that the vault has a
constant value as a target for LTV and tries to keep LTV as close to the
target as possible.

� Curatorless means that the vault can operate without a curator. In
other words, it can be fully autonomous.

� LT V means Leveraged Tokenized Vault and Loan-To-Value ratio at the
same time. From this point forward, LTV will exclusively denote the
Loan-to-Value ratio, omitting its application as a Leveraged Tokenized
Vault.

2 Motivation

Leverage vaults are commonly used in DeFi to open and maintain leveraged
positions in lending protocols, simplifying the user experience. As of the date of
publication, more than 20 vaults with a total TVL exceeding 100,000 ETH have
been deployed in the Ethereum ecosystem, utilizing over 9 lending protocols
as leverage sources. These include vaults for leveraged yield farming strategies
(e.g., Instadapp Lite ETH v2 vault [4], CIAN LST vaults [5]), as well as leveraged
long/short vaults designed for trading (e.g., Index Coop)

However, the strategy of such vaults is executed via manual curation. As
a result, vaults with such architecture struggle to scale on multiple asset pairs
due to the manual effort required for position monitoring, risk assessment, and
optimization. Additionally, they carry counterparty risks, such as human error
and lack of transparency, forcing users to trust curators without verification of
optimal strategy execution.

This paper introduces the design of curatorless leverage vaults, offering scal-
ability through a permissionless architecture, similar to Uniswap V2 [6] pools.
This allows anyone to deploy a leverage vault for any pair of assets, eliminating
the need for manual oversight.
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We consider curatorless leverage vaults to become a new DeFi primitive that
will be reused as a basic building block for more complex products (e.g. leverage
aggregators with automatic refinancing mechanisms). It can also be used as a
convenient tool for interest rate arbitrage including a cross-chain one, due to
the tokenization of leverage positions.

In the current paper, we focus on leverage vaults for correlated asset pairs
(e.g. ETH LST[7] [8] to ETH, or yield-bearing stablecoins to stablecoins[9] [10]).
Leverage for non-correlated pairs requires additional soft liquidation mecha-
nisms which are planned for future work.

3 Design intuition

3.1 Overview

Leveraged vault is designed to manage collective leverage position for a
selected pair of assets at a selected target leverage level using a selected
lending protocol.

The leveraged position is achieved via recursive borrowing [11] [12] [13] [14]
[15] [16]. When a borrowing asset is borrowed, it is converted into a collateral
asset, deposited into a lending protocol as collateral, which allows borrowing
more of the borrowing asset, converting it again into collateral, and so on. This
way we can achieve leverage exposure. However, the vault does not directly
participate in the execution of recursive borrowing. It only provides the interface
and incentives for users to maintain the leverage position.

Each time the user interacts with a vault (depositing or withdrawing funds),
it changes the ratio of collateral assets to the borrowed asset [3], thereby chang-
ing the leverage level. To push LTV as close to the target as possible, the vault
uses auctions [17] [18] with the incentives system. If user action pushes the
vault LTV towards the target - it will be rewarded. If user action pushes the
vault LTV away from the target LTV - it will be charged with an additional fee
and the vault will open an auction that will align leverage to a target level once
executed.

Assuming some level of efficiency in the market (due to a lot of MEV
searchers existing) [19] [20] we can expect such a vault to always keep the target
leverage level by adjusting the position after every user interaction. Therefore,
the design of the auctions and incentives system became the most crucial part
of the vault design and was meticulously described in this paper and formally
proven.
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3.2 Desired properties

� Implementation of two interconnected EIP4626 [2] vaults, featuring four
core functions: deposit, withdraw, mint, and redeem for two distinct as-
sets: collateral and borrow.

� Maintenance of a constant target LTV [3], ensuring that after each oper-
ation, the LTV remains aligned with the predefined target, thus enabling
automatic rebalancing.

� Rebalancing costs are exclusively borne by users interacting with the vault,
rather than all share holders, minimizing the potential for vault value
depletion.

� The system is designed for bidirectional (deposits and withdrawals) oper-
ations with minimal limitations, facilitating flexible asset management.

� Incorporation basic level of MEV protection [19] [20] measures to guard
against frontrunning activities.

3.3 Equation of global balance

borrow +∆borrow

collateral +∆collateral
= targetLTV

This is the main equation of the system. When a user performs an operation,
they must satisfy this equation. Here, ∆ represents the change from the user
interaction, while variables without delta represent the current state of the vault.

To consistently return to the targetLTV , auction mechanisms, and incen-
tives are employed.

3.4 Auction stimulus system

To be MEV [19] protected, incentives must be implemented through an auction
system rather than direct incentives. Therefore, auctions are used. The auc-
tion system is designed for rebalancing the vault to maintain a constant LTV .
Auctions [17] [18] are triggered when there is a deviation from the targetLTV .
Users receive incentives (rewards) for participating in the auctions and helping
to rebalance the vault.

Almost every interaction with the vault will impact the auction system. If a
user wants to make a move that leads to a better LTV (closer to targetLTV ),
they will receive an incentive. If a user wants to make a move that leads
to a worse LTV , they will pay a fee. This is how the system maintains the
targetLTV .

7



3.5 Rebalance flow example

Here is an example that showcases rebalance flow in one of the most common
cases. We assume LST-ETH:ETH price is 1:1.

1. Given LST-ETH/ETH x4 leverage vault (4x leverage means that targetLTV
is 0,75) in the ideal state (LTV equals targetLTV ).

Vault state:
collateral debt LTV Taget LTV

40 LST-ETH 30 ETH 0,75 0,75

2. The user deposits 1 ETH into the vault

(a) The vault will immediately repay 1 ETH debt in the lending protocol.

(b) Within the same transaction, the vault will open an auction for ex-
changing ∼ 4 ETH into ∼ 4 LST-ETH to return to the target LTV
(The user will be charged a fee that will be used as an incentive for
auction).

Vault state:
collateral debt LTV Taget LTV

40 LST-ETH ∼ 29 ETH 0,66 0,75

3. The auction is executed by arbitrage bots At the time of auction execution
the vault borrowed ∼ 4 ETH from the lending protocol, sold it for
∼ 4 LST-ETH with the incentive to arbitrage bot, and deposited obtained
∼ 4 LST-ETH to the lending protocol.
Vault return to the ideal state (real LTV equals target LTV)

Vault state:
collateral debt LTV Taget LTV

∼ 44 LST-ETH ∼ 33 ETH 0,75 0,75
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4 Logical notation framework

4.1 Boolean values

In this paper, we adopt a binary representation for logical values, where the value
0 is used to represent a false statement, and the value 1 is used to represent
a true statement. This convention will be consistently followed throughout
the paper to facilitate the formalization of logical expressions and simplify the
computational interpretation of Boolean functions.

That means that these statements are correct:

(7 > 5) = true = 1

(6 < 5) = false = 0

4.2 Operator sum of logical values

In this paper, we can sum logical values. For example:

(5 < 6) + (6 < 7) + (7 < 8) = 3

The result of this sum is equal to 3 because all three statements are true.

4.3 Operator and

In our notation, we utilize the and operator (denoted by ∧ ) to represent the
Boolean conjunction. The conjunction operation results in true only when both
operands are true and false otherwise.

4.4 Operator or

In our notation, we utilize the or operator (denoted by ∨ ) to represent the
Boolean disjunction. The disjunction operation results in true when at least
one of the operands is true and false otherwise.

4.5 Operator ¬
In our notation, we utilize the ¬ operator to represent the negation of a log-
ical value. The negation operation inverts the logical value of the operand,
transforming true into false and false into true.

4.6 Sign of factors

In the inequality factorA × factorB > 0 indicates that both factors, factorA
and factorB, share the same sign. In the inequality factorA× factorB < 0, it
indicates that the factors, factorA and factorB, have opposite signs.
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5 Constants

5.1 LTV constants

� targetLTV : The target Loan-to-Value ratio (LTV)[3] represents the ratio
of the borrowed value to the value of the collateral. The goal is to maintain
the LTV in lending protocol at the ratio specified in targetLTV .

� minProfitLTV : The minimum profitable LTV is the lowest LTV the
vault can temporarily accommodate during an auction.

� maxSafeLTV : The maximum safe LTV is the highest LTV the vault can
temporarily accommodate during an auction.

0 < minProfitLTV < targetLTV < maxSafeLTV < 1

5.2 Slippage

slippage: The slippage coefficient is a factor multiplied by the price to stim-
ulate auction participant engagement and increase the probability of auction
execution.

0 < slippage ≪ 1

5.3 Auction size

amountOfSteps: the total number of steps in the auction process, where each
step corresponds to a single block.
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6 Price oracles

6.1 Time settings

� t: The time that ticks with every block

� i: The time that ticks with every user interaction.

6.2 Collateral and borrow prices

PriceCollateral and PriceBorrow are the prices of the collateral and bor-
row assets relative to a common value. Common value refers to the universal
currency used to compare the prices of different assets.

PriceCollateralOraclet ∈ PriceCollateral, PriceBorrowOraclet ∈ PriceBorrow
are the prices of the collateral asset to common value and borrow asset to com-
mon value at time t from the oracle [21][22].

PriceCollateralDext ∈ PriceCollateral, PriceBorrowDext ∈ PriceBorrow
are the prices of the collateral asset to common value and borrow asset to com-
mon value at time t from the abstract DEX[6][23].

SetPricesCollateralDext and SetPricesBorrowDext are sets of prices of
the collateral to common value and borrow to common value at time t from the
different DEXs.

SetPricesCollateralDext = {PriceCollateralDex∗
t ...}

SetPricesBorrowDext = {PriceBorrowDex∗
t ...}

11



6.3 Price impact into slippage

slippageCollateral = slippage×mpc

mpct = max(max(SetPricesCollateralDext), P riceCollateralOraclet)

slippageBorrow = slippage×mpb

mpbt = max(max(SetPricesBorrowDext), P riceBorrowOraclet)

slippageCollateral, slippageBorrow select the maximum among all DEX
prices and the Oracle price at the time. The rationale behind using the maxi-
mum value is likely to ensure that the collateral or borrow is valued conserva-
tively during slippage calculation, protecting against a depeg that might occur
if one price source is temporarily higher than the market consensus.

If the price is calculated using at least one DEX and the Oracle, slippageCollateral
and slippageBorrow select different price sources in the common case (except
the case when all prices are equal). Because the source with the maximum price
for the borrow asset will at the same time provide the minimum price for the
collateral asset.

6.4 Lending protocol interest rate repayment and return

∆BorrowRepaymentt is the amount of borrowed funds that the vault will
pay to the lending protocol at time t. ∆CollateralReturnt is the amount of
collateral that the vault will get from the lending protocol at time t.

∆BorrowRepaymentt ≥ 0

∆CollateralReturnt ≥ 0

∆BorrowRepaymentt and ∆CollateralReturnt represent different ways of
expressing the interest rate in a lending protocol.
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7 State

7.1 Auction

auctionStepProportion is the proportion of the auction step that is used to
calculate the protocol and the user rewards.

auctionStepProportion =
auctionStep

amountOfSteps

auctionStep =

{
currentBlock − startAuction ¬stuck
amountOfSteps stuck

startAuction is the block number when the auction starts. startAuction
can be rewritten afterward in case of merge.

stuck is a boolean value that indicates whether an auction is stuck.

7.2 Borrow

The borrow is what the protocol will owe to the lending protocol after the
full execution of the auction, and all fee payments.

The realBorrow is what the protocol owes to the lending protocol. The
realBorrow value must always be greater than or equal to 0.

realBorrow ≥ 0

The realBorrow can only fall below zero in one scenario: when an individ-
ual (referred to as the Good Samaritan) repays the vault’s borrow and even
contributes additional funds to it. In such cases, we assume that our protocol
will treat the borrow as zero in lending protocols where applicable. Although
this scenario will influence the borrow value.

futureBorrow is the value of borrowing that will change when the auction
is fully executed. If futureBorrow > 0, the realBorrow will increase. If
futureBorrow < 0, the realBorrow will decrease.

futureRewardBorrow is the value of borrowing that will be distributed as
a reward when an auction is fully executed. The futureRewardBorrow will
always be greater than or equal to 0.

futureRewardBorrow ≥ 0

The borrow can be represented as the sum of realBorrow, futureBorrow
and FutureRewardBorrow.

borrow = realBorrow + futureBorrow + futureRewardBorrow

protocolFutureRewardBorrow is the value of borrowing that will be sent as
protocol fee when the auction is fully executed. protocolFutureRewardBorrow
will always be greater than or equal to 0.
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protocolFutureRewardBorrow ≥ 0

userFutureFeeBorrow is the value of borrowing that will be sent as a user
reward when the auction is fully executed. userFutureFeeBorrow will always
be greater than or equal to 0.

userFutureFeeBorrow ≥ 0

futureRewardBorrow is always equal to the sum of protocolFutureFeeBorrow
and userFutureFeeBorrow.

futureRewardBorrow = protocolFutureRewardBorrow +

+ userFutureRewardBorrow

protocolFutureRewardBorrow = futureRewardBorrow×(1−auctionStepProportion)

userFutureRewardBorrow = futureRewardBorrow×auctionStepProportion

stuck = currentBlock − startAuction > amountOfStep

7.3 Borrow assets

realBorrowAssetst is the amount of borrowed assets that the vault has at
time t according to lending protocol output.

realBorrowAssetst = realBorrowAssetst−1 +∆BorrowRepaymentt

realBorrowt = realBorrowAssets× PriceBorrowt

futureBorrowAssets represents the amount of futureBorrow in the bor-
rowed assets.

futureBorrowt = futureBorrowAssetst × PriceBorrowt

futureRewardBorrowAssets represents the amount of futureRewardBorrow
in the borrowed assets.

futureRewardBorrowt = futureRewardBorrowAssetst × PriceBorrowt
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7.4 Collateral

The collateral is what the protocol will have as collateral in the lending pro-
tocol after the full execution of the auction and all fee payments. The collateral
value must always be greater than or equal to 0.

collateral ≥ 0

The realCollateral is what the protocol has as collateral in the lending
protocol. The realCollateral value must always be greater than or equal to 0.

realCollateral ≥ 0

futureCollateral is the value of the collateral that will be adjusted when the
auction is fully executed. If futureCollateral > 0, realCollateral will increase.
If futureCollateral < 0, realCollateral will decrease.

futureRewardCollateral is the value of the collateral that will be dis-
tributed as a reward when an auction is fully executed. futureRewardCollateral
is always less than or equal to 0.

futureRewardCollateral ≤ 0

The collateral can be represented as the sum of realCollateral, futureCollateral
and futureRewardCollateral.

collateral = realCollateral + futureCollateral + futureRewardCollateral

futureRewardCollateral is always equal to the sum of protocolFutureRewardCollateral
and userFutureRewardCollateral.

futureRewardCollateral = protocolFutureRewardCollateral +

+ userFutureRewardCollateral

protocolFutureRewardCollateral = futureRewardCollateral×(1−auctionStepProportion)

userFutureRewardCollateral = futureRewardCollateral×auctionStepProportion
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7.5 Collateral assets

realCollateralAssetst is the amount of collateral assets that the vault has
at time t according to lending protocol output.

realCollateralAssetst = realCollateralAssetst−1 +∆CollateralReturnt

realCollateralt = realCollateralAssets× PriceCollateralt

futureCollateralAssets represents the amount of futureCollateral in the
collateral assets.

futureCollateralt = futureCollateralAssetst × PriceCollateralt

futureRewardCollateralAssets represents the amount of futureRewardCollateral
in the collateral assets.

futureRewardCollateralt = futureRewardCollateralAssetst×PriceCollateralt

7.6 Connection between rewards

If futureRewardBorrow > 0, then futureRewardCollateral = 0.

futureRewardBorrow > 0 ⇒ futureRewardCollateral = 0

If futureRewardCollateral < 0, then futureRewardBorrow = 0.

futureRewardCollateral < 0 ⇒ futureRewardBorrow = 0

Both can also be equal to 0.

(futureRewardBorrow > 0 ∧ futureRewardCollateral < 0) = false
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7.7 Origin

The origin state that exists in the state of the lending protocol:

� realBorrowAssets

� realCollateralAssets

The origin state that exists in the smart contract state:

� futureBorrowAssets

� futureCollateralAssets

� futureRewardBorrowAssets

� futureRewardCollateralAssets

� startAuction

All other state variables are calculated on the fly in each time step t.
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8 State transition variables

8.1 Borrow

∆borrow is the amount of change in borrowing within the protocol. ∆borrow
can be positive or negative.

∆userBorrow is the aggregated value of the user’s borrowed value. ∆userBorrow
can be positive or negative.

∆protocolFutureRewardBorrow is the value of borrowing that will be sent
as a protocol fee. ∆protocolFutureRewardBorrow will always be less than or
equal to 0.

∆protocolFutureRewardBorrow ≤ 0

∆borrow = ∆userBorrow +∆protocolFutureRewardBorrow

∆realBorrow: The ∆realBorrow represents the amount the user wants to
borrow from the protocol. If ∆realBorrow > 0, the user wants to withdraw and
borrow; if ∆realBorrow < 0, the user wants to deposit and decrease protocol
borrow.

∆futureBorrow represents the change in borrowing that needs to be applied
to the auction amount.

∆userFutureRewardBorrow is the amount of borrowing that will go to the
user as a reward for the auction execution. ∆userFutureRewardBorrow will
always be less than or equal to 0. Note that in this case, the reward for the
user is not the same as the user’s profit. To determine the real profit a user will
receive, refer to the internal assumptions section.

∆userFutureRewardBorrow ≤ 0

∆futurePaymentBorrow is the value of borrowing that will be paid by
the user for creating the auction. ∆userFutureRewardBorrow will always be
greater than or equal to 0.

∆futurePaymentBorrow ≥ 0

∆userBorrow =∆realBorrow+

+∆futureBorrow+

+∆userFutureRewardBorrow+

+∆futurePaymentBorrow
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8.2 Collateral

∆collateral represents the change in the value of collateral within the pro-
tocol. ∆collateral can be positive or negative.

∆userCollateral is the aggregate value of the user’s collateral value. ∆userCollateral
can be positive or negative.

∆protocolFutureRewardCollateral is the value of collateral that will be sent
as a protocol fee. ∆protocolFutureRewardCollateral will always be greater
than or equal to 0.

∆protocolFutureRewardCollateral ≥ 0

∆collateral = ∆userCollateral +∆protocolFutureRewardCollateral

∆realCollateral: ∆realCollateral represents the value of collateral the user
wants to change in the protocol. If ∆realCollateral > 0, the user wants to
deposit collateral; if ∆realCollateral < 0, the user wants to withdraw collateral.

∆futureCollateral represents the change in collateral that needs to be ap-
plied to the auction value.

∆userFutureRewardCollateral is the value of the collateral that will be
given to the user as a reward for auction execution. ∆userFutureRewardCollateral
will always be greater than or equal to 0. Note that in this case, the reward for
the user is not the same as the user’s profit. To determine the real profit a user
will receive, refer to the internal assumptions section.

∆userFutureRewardCollateral ≥ 0

∆futurePaymentCollateral is the value of the collateral that will be paid
by the user for creating the auction. ∆futurePaymentCollateral will always
be less than or equal to 0.

∆futurePaymentCollateral ≤ 0

∆userCollateral =∆realCollateral+

+∆futureCollateral+

+∆userFutureRewardCollateral+

+∆futurePaymentCollateral
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8.3 Shares and fees

∆shares represent the change in shares that the user sends into the vault
or receives into the vault. If ∆shares > 0, the user will receive shares; if
∆shares < 0, the user will send shares.

∆shares = ∆userCollateral −∆userBorrow

∆fee is the amount of fee that the vault will receive. ∆fee will always be
greater than or equal to 0.

fee ≥ 0

∆fee = ∆protocolFutureRewardCollateral−∆protocolFutureRewardBorrow

8.4 i+ 1 step transition

Every variable in the state can be represented as the sum of its previous state
and the change in the variable.

realBorrowi+1 = realBorrowi +∆realBorrow

realCollaterali+1 = realCollaterali +∆realCollateral

futureBorrowi+1 = futureBorrowi +∆futureBorrow

futureCollaterali+1 = futureCollaterali +∆futureCollateral

futureRewardBorrowi+1 = futureRewardBorrowi +

+ ∆futurePaymentBorrow +

+ ∆userFutureRewardBorrow +

+ ∆protocolFutureRewardBorrow

∆futurePaymentBorrow ≥ 0 ∆userFutureRewardBorrow ≤ 0
∆protocolFutureRewardBorrow ≤ 0

Table 1: futureRewardBorrow flow
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futureRewardCollaterali+1 =futureRewardCollaterali +

+ ∆futurePaymentCollateral +

+ ∆userFutureRewardCollateral +

+ ∆protocolFutureRewardCollateral

∆futurePaymentCollateral ≤ 0 ∆userFutureRewardCollateral ≥ 0
∆protocolFutureRewardCollateral ≥ 0

Table 2: futureRewardBorrow flow

8.5 Merging auction

Condition for merging an auction:

merge = futureBorrow ×∆futureBorrow > 0 ∧
∧ futureCollateral ×∆futureCollateral > 0

If this condition is false, the auction is not merged; we do not change
startAuctioni+1.

During the merging process, we assess the existing and new auctions using
their respective auctionWeight and ∆auctionWeight.

auctionWeight =

{
futureRewardBorrow ∆futurePaymentBorrow ̸= 0

futureRewardCollateral ∆futurePaymentCollateral ̸= 0

∆auctionWeight =

{
∆futurePaymentBorrow ∆futurePaymentBorrow ̸= 0

∆futurePaymentCollateral ∆futurePaymentCollateral ̸= 0

auctionStepi+1 =

⌊
auctionStepi × auctionWeight

auctionWeight+∆auctionWeight

⌉

∆startAuctioni+1 =

{
currentBlock − auctionStepi+1 merge

startAuctioni ¬merge

startAuctioni+1 can be adjusted retroactively.
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9 7 systems of linear equations

9.1 Cases recitation

Our mathematical framework can be represented as 7 systems of linear equa-
tions, with each system of equations corresponding to a distinct case. These
individual systems of equations are referred to as ”cases” within the system.

� cna: Case: No Auction. In this case, the auction is not touched.

� cmcb: Case: Merge (auction) Collateral (to) Borrow.

� cecb: Case: Execute (auction) Collateral (to) Borrow.

� ceccb: Case: Execute (auction and) Create (new auction) Collateral (to)
Borrow.

� cmbc: Case: Merge (auction) Borrow (to) Collateral.

� cebc: Case: Execute (auction) Borrow (to) Collateral.

� cecbc: Case: Execute (auction and) Create (new auction) Borrow (to)
Collateral.

Each auction case can be systematically classified using two primary criteria.
The first criterion distinguishes between cases ”borrow to collateral” and ”col-
lateral to borrow”. The second criterion differentiates among three operations:
”merge”, ”execute”, and ”execute and create”. The intersection of these two
criteria yields six distinct cases. Additionally, there exists one case where the
auction is not involved or touched - cna.

Merge Execute Execute and create
Collateral to borrow cmbc cecb ceccb
Borrow to collateral cmbc cebc cecbc

Table 3: Classification of the 6 auction cases where the auction is touched

9.2 Case expressions

The following expressions define the conditions for each of the 7 cases.

9.2.1 cna constraint

The condition cna will be true if and only if ∆futureBorrow = 0 and
∆futureCollateral = 0, meaning that both the futureBorrowi+1 and futureCollaterali+1

remain unchanged.

cna = (∆futureBorrow = 0 ∧∆futureCollateral = 0)
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9.2.2 cmcb constraint

The condition cmcb will be true if and only if the following 4 conditions are
met: futureBorrow ≤ 0, futureCollateral ≤ 0, ∆futureBorrow < 0, and
∆futureCollateral < 0.

cmcb = ( futureBorrow ≤ 0 ∧
∧ futureCollateral ≤ 0 ∧
∧ ∆futureBorrow < 0 ∧
∧ ∆futureCollateral < 0)

futureBorrow ≤ 0 and futureCollateral ≤ 0 means that the case is
”merge” type.

∆futureBorrow < 0 and ∆futureCollateral < 0 means that the current
case is ”collateral to borrow” type.

9.2.3 cecb constraint

The condition cecb will be true if and only if the following 6 conditions are
met:

cecb = ( futureBorrow +∆futureBorrow ≥ 0 ∧
∧ futureCollateral +∆futureCollateral ≥ 0 ∧
∧ futureBorrow > 0 ∧
∧ futureCollateral > 0 ∧
∧ ∆futureBorrow < 0 ∧
∧ ∆futureCollateral < 0)

The first 4 conditions mean that the case is ”execute” type.
∆futureBorrow < 0 and ∆futureCollateral < 0 means that the current

case is ”collateral to borrow” type.

23



9.2.4 ceccb constraint

The condition ceccb will be true if and only if the following 6 conditions are
met:

ceccb = ( futureBorrow +∆futureBorrow < 0 ∧
∧ futureCollateral +∆futureCollateral < 0 ∧
∧ futureBorrow > 0 ∧
∧ futureCollateral > 0 ∧
∧ ∆futureBorrow < 0 ∧
∧ ∆futureCollateral < 0)

The first 4 conditions mean that the case is ”execute and create” type.
∆futureBorrow < 0 and ∆futureCollateral < 0 means that the current

case is ”collateral to borrow” type.

9.2.5 cmbc constraint

The condition cmcb will be true if and only if the following 4 conditions are
met: futureBorrow ≥ 0, futureCollateral ≥ 0, ∆futureBorrow > 0, and
∆futureCollateral > 0.

cmbc = ( futureBorrow ≥ 0 ∧
∧ futureCollateral ≥ 0 ∧
∧ ∆futureBorrow > 0 ∧
∧ ∆futureCollateral > 0)

futureBorrow ≥ 0 and futureCollateral ≥ 0 means that the case is
”merge” type.

∆futureBorrow > 0 and ∆futureCollateral > 0 means that the current
case is ”borrow to collateral” type.
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9.2.6 cebc constraint

The condition cebc will be true if and only if the following 6 conditions are
met:

cebc = ( futureCollateral +∆futureCollateral ≤ 0 ∧
∧ futureBorrow +∆futureBorrow ≤ 0 ∧
∧ futureBorrow < 0 ∧
∧ futureCollateral < 0 ∧
∧ ∆futureBorrow > 0 ∧
∧ ∆futureCollateral > 0)

The first 4 conditions mean that the case is ”execute” type.
∆futureBorrow > 0 and ∆futureCollateral > 0 means that the current

case is ”borrow to collateral” type.

9.2.7 cecbc constraint

The condition cecbc will be true if and only if the following 6 conditions are
met:

cecbc = ( futureCollateral +∆futureCollateral > 0 ∧
∧ futureBorrow +∆futureBorrow > 0 ∧
∧ futureBorrow < 0 ∧
∧ futureCollateral < 0 ∧
∧ ∆userFutureBorrow > 0 ∧
∧ ∆userFutureCollateral > 0)

The first 4 conditions mean that the case is ”execute and create” type.
∆futureBorrow > 0 and ∆futureCollateral > 0 means that the current

case is ”borrow to collateral” type.
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9.3 Exclusive constraint activation principle

In this exceptional case, the following condition holds true: among the con-
straints denoted by cna, cmcb, cecb, ceccb, cmbc, cebc, and cecbc, exactly one
is active at any given time, while all others remain inactive. This implies that
the system is governed by a unique exclusivity principle, whereby only one con-
straint is valid at a time.

Mathematically, we can express this relationship as:

cna+ cmcb+ cecb+ ceccb+ cmbc+ cebc+ cecbc = 1

This equation asserts that the sum of all constraints is always equal to one,
ensuring that no more than one constraint is true simultaneously, while the
remaining constraints must necessarily be false.

10 Case declarations

In each scenario, distinct interdependencies emerge among the following vari-
ables:

� ∆futureBorrow

� ∆futureCollateral

� ∆futurePaymentBorrow

� ∆userFutureRewardBorrow

� ∆protocolFutureRewardBorrow

� ∆futurePaymentCollateral

� ∆userFutureRewardCollateral

� ∆protocolFutureRewardCollateral
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10.1 cna declaration

In the cna case, ∆futureBorrow is equal to ∆futureCollateral because
the auction is not touched.

All other variables should be equal to zero in this case.

cna ⇒ ∆futureBorrow = ∆futureCollateral

cna ⇒ ∆futurePaymentBorrow = 0

cna ⇒ ∆userFutureRewardBorrow = 0

cna ⇒ ∆protocolFutureRewardBorrow = 0

cna ⇒ ∆futurePaymentCollateral = 0

cna ⇒ ∆userFutureRewardCollateral = 0

cna ⇒ ∆protocolFutureRewardCollateral = 0
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10.2 cmcb declaration

In the cmcb case, ∆futureBorrow is equal to ∆futureCollateral because
the auction is merged.

When merging the auction, the user should pay−∆futureBorrow×borrowSlippage,
or in other words, ∆futurePaymentBorrow.

All other variables should be equal to zero in this case.

cmcb ⇒ ∆futureBorrow = ∆futureCollateral

cmcb ⇒ ∆futurePaymentBorrow = −∆futureBorrow × borrowSlippage

cmcb ⇒ ∆userFutureRewardBorrow = 0

cmcb ⇒ ∆protocolFutureRewardBorrow = 0

cmcb ⇒ ∆futurePaymentCollateral = 0

cmcb ⇒ ∆userFutureRewardCollateral = 0

cmcb ⇒ ∆protocolFutureRewardCollateral = 0
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10.3 cecb declaration

In the cecb case, ∆futureCollateral is equal to ∆futureBorrow× futureCollateral
futureBorrow

because the auction is executed.
When executing the auction, the user should get a reward

userFutureRewardCollateral × ∆futureCollateral
futureCollateral , or in other words,

∆userFutureRewardCollateral.
When executing the auction, the protocol should get a reward

protocolFutureRewardCollateral × ∆futureCollateral
futureCollateral , or in other words,

∆protocolFutureRewardCollateral.
All other variables should be equal to zero in this case.

cecb ⇒ ∆futureCollateral = ∆futureBorrow × futureCollateral

futureBorrow

cecb ⇒ ∆futureBorrow = ∆futureCollateral × futureBorrow

futureCollateral

cecb ⇒ ∆futurePaymentBorrow = 0

cecb ⇒ ∆userFutureRewardBorrow = 0

cecb ⇒ ∆protocolFutureRewardBorrow = 0

cecb ⇒ ∆futurePaymentCollateral = 0

cecb ⇒ ∆userFutureRewardCollateral = userFutureRewardCollateral ×

× ∆futureCollateral

futureCollateral

cecb ⇒ ∆protocolFutureRewardCollateral = protocolFutureRewardCollateral ×

× ∆futureCollateral

futureCollateral
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10.4 ceccb declaration

In the ceccb case, ∆futureCollateral is equal to
futureBorrow +∆futureBorrow − futureCollateral
because the auction is execution.

When merging the auction, the user should pay
−(∆futureBorrow + futureBorrow)× borrowSlippage,
or in other words, ∆futurePaymentBorrow.

When executing the auction, the user should get a reward
−userFutureRewardCollateral, or in other words, ∆userFutureRewardCollateral.

When executing the auction, the protocol should get a reward
−protocolFutureRewardCollateral, or in other words, ∆protocolFutureRewardCollateral.

All other variables should be equal to zero in this case.

ceccb ⇒ ∆futureCollateral = futureBorrow +∆futureBorrow − futureCollateral

ceccb ⇒ ∆futureBorrow = futureCollateral +∆futureCollateral − futureBorrow

ceccb ⇒ ∆futurePaymentBorrow = −(∆futureBorrow + futureBorrow) ×
× borrowSlippage

ceccb ⇒ ∆userFutureRewardBorrow = 0

ceccb ⇒ ∆protocolFutureRewardBorrow = 0

ceccb ⇒ ∆futurePaymentCollateral = 0

ceccb ⇒ ∆userFutureRewardCollateral = −userFutureRewardCollateral

ceccb ⇒ ∆protocolFutureRewardCollateral = −protocolFutureRewardCollateral
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10.5 cmbc declaration

In the cmbc case, ∆futureBorrow is equal to ∆futureCollateral because
the auction is merged.

When merging the auction, the user should pay
−∆futureCollateral × collateralSlippage,
or in other words, ∆futurePaymentCollateral.

All other variables should be equal to zero in this case.

cmbc ⇒ ∆futureBorrow = ∆futureCollateral

cmbc ⇒ ∆futurePaymentBorrow = 0

cmbc ⇒ ∆userFutureRewardBorrow = 0

cmbc ⇒ ∆protocolFutureRewardBorrow = 0

cmbc ⇒ ∆futurePaymentCollateral = −∆futureCollateral × collateralSlippage

cmbc ⇒ ∆userFutureRewardCollateral = 0

cmbc ⇒ ∆protocolFutureRewardCollateral = 0
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10.6 cebc declaration

In the cebc case, ∆futureCollateral is equal to ∆futureBorrow× futureCollateral
futureBorrow

because the auction is executed.
When executing the auction, the user should get a reward

userFutureRewardBorrow × ∆futureBorrow
futureBorrow , or in other words,

∆userFutureRewardBorrow.
When executing the auction, the protocol should get a reward

protocolFutureRewardBorrow × ∆futureBorrow
futureBorrow , or in other words,

∆protocolFutureRewardBorrow.
All other variables should be equal to zero in this case.

cebc ⇒ ∆futureCollateral = ∆futureBorrow × futureCollateral

futureBorrow

cebc ⇒ ∆futureBorrow = ∆futureCollateral × futureBorrow

futureCollateral

cebc ⇒ ∆futurePaymentBorrow = 0

cebc ⇒ ∆userFutureRewardBorrow = userFutureRewardBorrow ×

× ∆futureBorrow

futureBorrow

cebc ⇒ ∆protocolFutureRewardBorrow = protocolFutureRewardBorrow ×

× ∆futureBorrow

futureBorrow

cebc ⇒ ∆futurePaymentCollateral = 0

cebc ⇒ ∆userFutureRewardCollateral = 0

cebc ⇒ ∆protocolFutureRewardCollateral = 0
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10.7 cecbc declaration

In the cecbc case, ∆futureCollateral is equal to
futureBorrow +∆futureBorrow − futureCollateral
because the auction is executed.

When merging the auction, the user should pay
−(∆futureCollateral + futureCollateral)× collateralSlippage,
or in other words, ∆futurePaymentCollateral.

When executing the auction, the user should get a reward
−userFutureRewardBorrow, or in other words, ∆userFutureRewardBorrow.

When executing the auction, the protocol should get a reward
−protocolFutureRewardBorrow, or in other words, ∆protocolFutureRewardBorrow.

All other variables should be equal to zero in this case.

cecbc ⇒ ∆futureCollateral = futureBorrow +∆futureBorrow − futureCollateral

cecbc ⇒ ∆futureBorrow = futureCollateral +∆futureCollateral − futureBorrow

cecbc ⇒ ∆futurePaymentBorrow = 0

cecbc ⇒ ∆userFutureRewardBorrow = −userFutureRewardBorrow

cecbc ⇒ ∆protocolFutureRewardBorrow = −protocolFutureRewardBorrow

cecbc ⇒ ∆futurePaymentCollateral = −(∆futureCollateral + futureCollateral) ×
× collateralSlippage

cecbc ⇒ ∆userFutureRewardCollateral = 0

cecbc ⇒ ∆protocolFutureRewardCollateral = 0
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11 Case unification

Combining all 7 cases into one system of equations using conditions and binary
transformation of logical values we got the following system of equations:

∆futureBorrow =

= (cna+ cmcb+ cmbc+ ceccb+ cecbc)×∆futureCollateral +

+ (cecb+ cebc)×∆futureCollateral × futureBorrow

futureCollateral
+

+ (ceccb+ cecbc)× (futureCollateral − futureBorrow)

∆futureCollateral =

= (cna+ cmcb+ cmbc+ ceccb+ cecbc)×∆futureBorrow +

+ (cecb+ cebc)×∆futureBorrow × futureCollateral

futureBorrow
+

+ (ceccb+ cecbc)× (futureBorrow − futureCollateral)

∆futurePaymentBorrow =

= cmcb×−∆futureBorrow × borrowSlippage +

+ ceccb×−(∆futureBorrow + futureBorrow)× borrowSlippage

∆userFutureRewardBorrow =

= cebc× userFutureRewardBorrow × ∆futureBorrow

futureBorrow
+

+ cecbc×−userFutureRewardBorrow

∆protocolFutureRewardBorrow =

= cebc× protocolFutureRewardBorrow × ∆futureBorrow

futureBorrow
+

+ cecbc×−protocolFutureRewardBorrow

∆futurePaymentCollateral =

= cmbc×−∆futureCollateral × collateralSlippage +

+ cecbc×−(∆futureCollateral + futureCollateral)× collateralSlippage
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∆userFutureRewardCollateral =

= cecb× userFutureRewardCollateral × ∆futureCollateral

futureCollateral
+

+ ceccb×−userFutureRewardCollateral

∆protocolFutureRewardCollateral =

= cecb× protocolFutureRewardCollateral × ∆futureCollateral

futureCollateral
+

+ ceccb×−protocolFutureRewardCollateral
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12 Custom auction math

For the auction, the targetLTV constant rule is not followed. The custom
math for the auction is described here.

∆realBorrowα and ∆realCollateralα represent the amount of collateral and
borrow a user receives after the auction execution.

∆realBorrowα = ∆futureBorrowα +∆userRewardBorrowα

∆realCollateralα = ∆futureCollataralα +∆userRewardCollateralα

12.1 Auction calculation

The proportion of borrow and collateral in the auction is described by the
following equation:

∆futureBorrowα

∆futureCollataralα
=

futureBorrow

futureCollataral

The stimulus for this auction is ∆userRewardBorrowα and ∆userRewardCollateralα.

∆userRewardBorrowα = userRewardBorrow × ∆futureBorrowα

futureBorrow

∆userRewardCollateralα = userRewardCollateral × ∆futureCollataralα

futureCollataral

12.2 Auction custom fee

The difference between a common fee is that the fee will be paid not in shares
but in collateral or borrow assets.

∆protocolRewardCollateralα = protocolRewardCollateral × ∆futureCollataralα

futureCollataral

∆protocolRewardBorrowα = protocolRewardBorrow × ∆futureBorrowα

futureBorrow
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12.3 Auction i+ 1 state transition

Auction i+ 1 state transition is very similar to regular math.

realBorrowi+1 = realBorrowi +∆realBorrowα +

+∆protocolFutureRewardBorrowα

realCollaterali+1 = realCollaterali +∆realCollateralα +

+∆protocolFutureRewardCollateralα

futureBorrowi+1 = futureBorrowi +∆futureBorrowα

futureCollaterali+1 = futureCollaterali +∆futureCollateralα

futureRewardBorrowi+1 = futureRewardBorrowi +

+ ∆userFutureRewardBorrowα +

+ ∆protocolFutureRewardBorrowα

futureRewardCollaterali+1 =futureRewardCollaterali +

+ ∆userFutureRewardCollateralα +

+ ∆protocolFutureRewardCollateralα

12.4 Auction assets variables

Asset variables are very similar to regular math.

∆protocolRewardBorrowα
t = ∆protocolRewardBorrowAssetsαt × PriceBorrowt

∆protocolRewardCollateralαt = ∆protocolRewardCollateralAssetsαt × PriceCollateralt

∆realBorrowα
t = ∆realBorrowAssetsαt × PriceBorrowt

∆realCollateralαt = ∆realCollateralAssetsαt × PriceCollateralt
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13 Smart contract functions

13.1 maxBorrow and maxCollateral limits

Before any function, except borrowAuction and collateralAuction, should check
that borrow and collateral are within the limits.

borrow +∆borrow < maxBorrow ∧ collateral+∆collateral < maxCollateral

13.2 Apply state changes

If there are no errors, after any function except borrowAuction and collateralAuction,
the smart contract should follow these steps:

� Print or burn new sharesAssets

� Transfer realBorrowAssets from the user or to the user

� Transfer realCollateralAssets from the user or to the user

� Transfer fee to the fee collector if it exists

� Save all variables
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13.3 Low-level function exchange

The main idea of the low-level function exchange is to provide the ability to
perform deposit and withdrawal operations with the best exchange rate.

Implicit input for the exchange function:

futureBorrowexchange
i+1 = 0

futureCollateralexchangei+1 = 0

Explicit input for the exchange function: sharesAssets, which can be greater
than zero, equal to zero, or less than zero.

Calculated using the system of equations, the output is realBorrowAssets,
realCollateralAssets (both can be greater than zero, equal to zero, or less than
zero), and all other variables.

sharesAssetsexchange > 0 ∨
∨ sharesAssetsexchange < 0 ∨
∨ sharesAssetsexchange = 0

realBorrowAssetsexchange > 0 ∨
∨ realBorrowAssetsexchange < 0 ∨
∨ realBorrowAssetsexchange = 0

realCollateralAssetsexchange > 0 ∨
∨ realCollateralAssetsexchange < 0 ∨
∨ realCollateralAssetsexchange = 0
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13.4 EIP4626 functions

13.4.1 Classification

EIP-4626 is a standard for tokenized Vaults in Ethereum that is primarily
designed for yield-bearing tokens. It provides a common interface for tokenized
vaults.

Functions of EIP-4626 for borrowing subvault:

� deposit

� withdraw

� mint

� redeem

Functions of EIP-4626 for collateral subvault:

� depositcollateral

� withdrawcollateral

� mintcollateral

� redeemcollateral

13.4.2 realBorrow limits

In the functions deposit, mint, depositcollateral, and mintcollateral, it is nec-
essary to ensure that the new real LTV exceeds minProfitLTV .

minProfitLTV ≤ realBorrow +∆realBorrow

realCollateral +∆realCollateral

In the functions withdraw, redeem, withdrawcollateral, and redeemcollateral,
it is necessary to ensure that the new real LTV remains below maxSafeLTV :

realBorrow +∆realBorrow

realCollateral +∆realCollateral
≤ maxSafeLTV
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13.5 EIP4626 borrow subvault functions

In this section, the implementation of four EIP4626 functions is described:
deposit, withdraw, mint, and redeem.

previewDeposit, previewWithdraw, previewMint, previewRedeem,maxDeposit,
maxWithdraw, maxMint, and maxRedeem will be implemented in the same
way as deposit, withdraw,mint, and redeem functions, but without any changes
to the state. There’s no need to describe them separately; they are trivial.

For the collateral subvault, the preview∗ andmax∗ functions will be omitted
for the same reasons mentioned earlier.

13.5.1 Implicit input realCollateral

The implicit input for all four functions is realCollateral equal to 0.

realCollateraldeposit,withdraw,mint,redeem = 0

13.5.2 Function deposit

The explicit input for the deposit function is −realBorrowAssets.

realBorrowAssetsdeposit < 0

Calculated using a system of equations output: sharesAssets.

sharesAssets < 0 ⇒ sharesAssetsdeposit = 0
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13.5.3 Function withdraw

The explicit input for the withdraw function is realBorrowAssets.

realBorrowAssetswithdraw > 0

Calculated using a system of equations output: −sharesAssets.

sharesAssets > 0 ⇒ sharesAssetswithdraw = 0

13.5.4 Function mint

The explicit input for the mint function is sharesAssets.

sharesAssetsmint > 0

Calculated using a system of equations output: −realBorrowAssets.

13.5.5 Function redeem

The explicit input for the redeem function is −sharesAssets.

sharesAssetsredeem < 0

Calculated using a system of equations output: realBorrowAssets.
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13.6 EIP4626 collateral subvault functions

13.6.1 Implicit input realBorrow

The implicit input for all four functions is realBorrow, which is equal to 0.

realBorrowdepositcollateral,withdrawcollateral,mintcollateral,redeemcollateral

= 0

13.6.2 Function depositcollateral

The explicit input for the depositcollateral function is realCollateralAssets.

realCollateralAssetsdeposit
collateral

< 0

Calculated using a system of equations output: sharesAssets.

sharesAssets < 0 ⇒ sharesAssetsdeposit
collateral

= 0

13.6.3 Function withdrawcollateral

The explicit input for the withdraw function is −realCollateralAssets.

realCollateralAssetswithdrawcollateral

> 0

Calculated using a system of equations output: −sharesAssets.

sharesAssets > 0 ⇒ sharesAssetswithdrawcollateral

= 0

13.6.4 Function mintcollateral

The explicit input for the mintcollateral function is sharesAssets.

sharesAssetsmintcollateral

> 0

Calculated using a system of equations output: realCollateralAssets.

13.6.5 Function redeemcollateral

The explicit input for the redeemcollateral function is −sharesAssets.

sharesAssetsredeem
collateral

< 0

Calculated using a system of equations output: −realCollateralAssets.
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13.7 Auction function

13.7.1 Limitations for auction size for borrow

abl = ∆realBorrowα ≥ −futureBorrowα − userRewardBorrowα ∧
∧ futureBorrow > 0 ∧
∧∆realBorrowα < 0

abg = ∆realBorrowα ≤ −futureBorrowα − userRewardBorrowα ∧
∧ futureBorrow < 0 ∧
∧∆realBorrowα > 0

The main limitation for the borrow variables and auction size is described
below:

ab = abl ∨ abg

13.7.2 Limitations for auction size for collateral

acl = ∆realCollateralα ≥ −futureCollateralα − userRewardCollateralα ∧
∧ futureCollateral > 0 ∧
∧∆realCollateralα < 0

acg = ∆realCollateralα ≤ −futureCollateralα − userRewardCollateralα ∧
∧ futureCollateral < 0 ∧
∧∆realCollateralα > 0

The main limitation for the collateral variables and auction size is described
below:

ac = acl ∨ acg

44



13.7.3 Common auction size limitations

The final limitations for the auction size are applied to the functions borrowAuction
and collateralAuction:

ab ∧ ac

13.7.4 Borrow auction

The explicit input for the borrowAuction function is ∆realBorrowAssetsα.
Calculated output: ∆realCollateralAssetsα. Custom auction math is applied
to the borrowAuction function.

13.7.5 Collateral auction

The explicit input for the collateralAuction function is ∆realCollateralAssetsα.
Calculated output: ∆realBorrowAssetsα. Custom auction math is applied to
the collateralAuction function.

45



14 Security assumptions

14.1 Security assumption level 0

Math is correct. The universal rules of algebra are correct. We are not idiots
and crazy people.

14.2 Environment

The designated blockchain for deployment exhibits robust security with no
identified vulnerabilities.

The network maintains a singular, unified chain with no forks or reorgani-
zations.

The network and blockchain uphold a commitment to censorship resistance,
ensuring unimpeded communication and transactional integrity.

The third-party implementations exhibit comprehensive security integrity
with no detected vulnerabilities and no malicious actors in the following areas:

� Lending protocol [11] [12] [13] [14] [15] [16]

� Oracle protocol [21] [22]

� DEX protocol [6] [23]
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14.3 Internal assumptions

The variable maxSafeLTV is sufficiently calibrated to avoid liquidation.
Should there be uncertainty regarding its adequacy, a soft liquidation mechanism
should be designed.

The parameter minProfitLTV is optimized to sufficiently incentivize user
engagement with the protocol.

The parameters maxBorrow and maxCollateral are strategically estab-
lished to define protocol boundaries, mitigating excessive borrowing ratios and
minimizing the risk of liquidation.

Within the range of blocks from 0 to amoutOfSteps, there will be at least
one block where userProfit will be sufficiently large to justify executing the
current auction.

userProfit = futureBorrow +

+ userFutureRewardBorrow +

− futureCollateral −
− userFutureRewardCollateral

Outside the vault, there is enough liquidity to move it to the targetLTV ,
especially in the case of a Good Samaritan attack.

The user will execute a post-validation for the asset amount and initiate a
reversal if there is any alteration in the protocol’s state. To avoid MEV.
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15 Results

15.1 Different stimuli for users in the case of positive and
negative auctions

The implemented mathematical model shows different scenarios of economic
incentives for the user. In the case of a positive auction, if futureBorrow > 0
and futureCollateral > 0, the user will be incentivized to deposit more assets.

In the case of a negative auction, if futureBorrow < 0 and
futureCollateral < 0, the user will be incentivized to withdraw more assets.

Until the auction is fully executed, the user will have a stable share price.
After the auction is executed, the user will have a new share price. After that,
the share price will tend to stabilize at the reverse operation’s price.
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Dependency of share price on the amount of withdrawal/deposit
Positive auction
Negative auction

Positive Negative
targetLTV 0.75 0.75
realBorrow 734000 765984

futureBorrow 16000 −16000
protocolFutureRewardBorrow 0 8
userFutureRewardBorrow 0 8

realCollateral 984016 1016000
futureCollateral 16000 −16000

protocolFutureRewardCollateral −8 0
userFutureRewardCollateral −8 0

Table 4: Initial state of positive and negative auction
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The stimulus will grow over time. With every new block, the user will have
more and more stimulus to interact with the vault because the share price will
remain stable until the auction is executed. However, the coefficient of the
stimulus will become larger and larger until someone executes the auction.
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Dependency of share price on the amount of withdrawal/deposit
futureRewardBorrow 16 0
futureRewardBorrow 14 2
futureRewardBorrow 12 4
futureRewardBorrow 10 6
futureRewardBorrow 8 8
futureRewardBorrow 6 10
futureRewardBorrow 4 12
futureRewardBorrow 2 14
futureRewardCollateral 0 16

The initial state is similar to Table 4. Only protocolFutureRewardBorrow
and userFutureRewardBorrow, are in the range of 0 to 16.
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15.2 Undercollateralized and overcollateralized vault

If the vault is undercollateralized or overcollateralized, for small values of
deposit and withdrawal, the user’s gain will tend towards −∞. This means
that user interaction with the vault will be less efficient than buying or selling
shares on the DEX market.
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Dependency of share price on the amount of withdrawal/deposit
Undercollateralized (LTV = 0.8, targetLTV = 0.75)
Overcollateralized (LTV = 0.66, targetLTV = 0.75)

Undercollateralized Overcollateralized
targetLTV 0.75 0.75

LTV 0.8 0.66
borrow 80000 66667

collateral 100000 100000

Table 5: Initial state of the undercollateralized and overcollateralized vault
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16 Future work

16.1 targetLTV tradeoffs

To avoid the tendency towards −∞ at small values of deposit and withdrawal,
the following design choices can be made:

� Change targetLTV to the range of [minTargetLTV,maxTargetLTV ].

� Enforce auctions only in the case of changes in LTV moving in a worse
direction.

� Set a function that considers deposit and withdrawal size and the effort
required to reach the target LTV.

16.2 Protocol safety

To create a safe protocol in the case of non-correlated assets and unpredictable
percentage rates, the following system should be designed:

� Soft liquidation to avoid liquidation risk.

� Algebraic or data-driven oracles for maxBorrow and maxCollateral.

16.3 Slippage

To make slippage more efficient, slippage can be dynamic and can be changed:

� By applying some heuristics based on historical auction data.

� By voting of protocol token holders or vault token holders.

16.4 Auction

To improve the auction system, the following changes can be made:

� The auction function can be non-linear. There is a wide spectrum of
possible functions.

� The auction can have parameters that will be changed by heuristics applied
to historical data.

� The auction auctionWeight can depend on futureBorrow and futureCollateral,
∆futureBorrow, ∆futureCollateral, protocolFutureRewardCollateral,
protocolFutureRewardBorrow, userFutureRewardCollateral,
userFutureRewardBorrow, ∆futurePaymentBorrow, ∆futurePaymentCollateral.
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16.5 Fee

Theoretically, the protocol can collect fees for the auction in one token, not in
three. And a variety of different fees can be designed and applied:

� Maximum token growth fee

� Deposit and withdrawal fee

� Token transfer fee

� Token holding fee

16.6 Adaptive LTV Management

To improve adaptability in response to market fluctuations and asset volatility,
the protocol could implement:

� Dynamic LTV thresholds that adjust based on real-time market condi-
tions and percentage rates.

� An oracle-based condition for increasing or decreasing LTV .

16.7 Automated Liquidation Recovery

For the riskiest leveraged pairs, the protocol could implement an automated
recovery system to address liquidation scenarios.
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17 Conclusion

This paper introduces the Curatorless Leveraged Tokenized Vault (LTV)
with a Constant Target Loan-to-Value ratio. The vault’s architecture features
a curatorless position rebalancing mechanism driven by auction incentives, en-
suring the alignment of vault leverage with its target after each user interaction.
Our analysis in the Results chapters demonstrates that the system performs as
expected within its defined parameters.

The proposed design fulfills our requirements for a decentralized and permis-
sionless architecture, but most importantly, a scalable system. By eliminating
the need for manual curation, it enables the deployment of leverage vaults for
any pair of correlated assets, as long as these assets have a leverage source (listed
in a lending protocol). Furthermore, assuming the possibility of permissionless
deployment of isolated lending pools, the entire process — from ERC-20 token
creation to leverage token deployment — can be fully permissionless. This ap-
proach opens the ability to obtain leveraged exposure for any token, provided
there is liquidity support. We believe that this design aligns deeply with DeFi
principles, making Curatorless Leveraged Tokenized Vault a new building block
in the DeFi ecosystem.

However, the proposed design still has room for improvement—refining the
auction and slippage mechanics and enhancing protocol safety for diverse finan-
cial contexts. Additionally, we have deferred the design of leverage vaults for
uncorrelated asset pairs, such as those used in trading strategies. This more
complex approach will require the development of advanced soft liquidation
mechanisms, which we intend to explore in future work.
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